
Ex. Split Ratio & Fraction

• Given the following data on streams:

 Perform Split Fraction and Split Ratios of the products in each column

Table 1.5 Operating Material Balance for Hydrocarbon Recovery Process

Component	lbmol/h in Stream								
	1 Feed to C1	2 C ₅ ⁺ -rich	3 Feed to C2	4 C ₃	5 Feed to C3	6 iC ₄	7 nC ₄ -rich		
C_2H_6	0.60	0.00	0.60	0.60	0.00	0.00	0.00		
C_3H_8	57.00	0.00	57.00	54.80	2.20	2.20	0.00		
iC_4H_{10}	171.80	0.10	171.70	0.60	171.10	162.50	8.60		
nC_4H_{10}	227.30	0.70	226.60	0.00	226.60	10.80	215.80		
iC_5H_{12}	40.00	11.90	28.10	0.00	28.10	0.00	28.10		
nC_5H_{12}	33.60	16.10	17.50	0.00	17.50	0.00	17.50		
C_6^+	205.30	205.30	0.00	0.00	0.00	0.00	0.00		
Total	735.60	234.10	501.50	56.00	445.50	175.50	270.00		

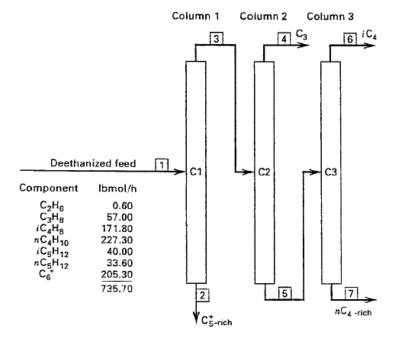

Ex. Split Ratio & Fraction

Table 1.5 Operating Material Balance for Hydrocarbon Recovery Process

	lbmol/h in Stream								
Component	1 Feed to C1	2 C ₅ ⁺ -rich	3 Feed to C2	4 C ₃	5 Feed to C3	6 iC ₄	7 nC ₄ -rich		
C ₂ H ₆	0.60	0.00	0.60	0.60	0.00	0.00	0.00		
C_3H_8	57.00	0.00	57.00	54.80	2.20	2.20	0.00		
iC_4H_{10}	171.80	0.10	171.70	0.60	171.10	162.50	8.60		
nC_4H_{10}	227.30	0.70	226.60	0.00	226.60	10.80	215.80		
iC_5H_{12}	40.00	11.90	28.10	0.00	28.10	0.00	28.10		
nC_5H_{12}	33.60	16.10	17.50	0.00	17.50	0.00	17.50		
C_6^+	205.30	205.30	0.00	0.00	0.00	0.00	0.00		
Total	735.60	234.10	501.50	56.00	445.50	175.50	270.00		

Table 1.6 Computed Split Fractions (SF) and Split Ratios (SR) for Hydrocarbon Recovery Process

Component	Column 1		Column 2		Column 3			
	SF	SR	SF	SR	SF	SR	Overall Percent Recovery	
C_2H_6	1.00	Large	1.00	Large	_	_	100	
C_3H_8	1.00	Large	0.9614	24.91	1.00	Large	96.14	
iC_4H_{10}	0.9994	1,717	0.0035	0.0035	0.9497	18.90	94.59	
nC_4H_{10}	0.9969	323.7	0.00	0.00	0.0477	0.0501	94.94	
<i>i</i> C ₅ H ₁₂	0.7025	2.361	0.00	0.00	0.00	0.00	29.75	
nC_5H_{12}	0.5208	1.087	0.00	0.00	0.00	0.00	47.92	
C_6^+	0.00	Small	_	_	_	_	100	

